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Equations of State for Hard-Sphere Fluids 1 

Y. Zhou 2 and G. Stell 2'3 

Equations of state and contact values of hard-sphere radial distribution 
functions (rdf's) which are given by a linear combination of the Percus-Yevick 
and scaled-particle virial expressions are considered. In the one-component case 
the mixing coefficient 0(r/) is, in general, a function of the volume fraction q. In 
mixtures the coefficient 0(r/i, di), in general, depends upon the volume fraction rh 
and diameter d i of each species, i and j. For the contact values Y,j of the rdf's, 
the mixing coefficients O~(qk) also depend on species i and j. Density expan- 
sions for the exact 0 for the one-component hard-sphere fluid are obtained and 
compared with several approximations made in earlier works and in our own 
work, as well as with simulations. For a mixture, it turns out that one cannot 
obtain the exact fourth virial coefficient by using a linear combination of the 
Percus-Yevick and scaled-particle virial expressions for Yo unless one allows O U 
to depend on mole fractions x~ even at the zeroth order of its density expansion. 
We also find that O~j must depend on particle species i and j in order to satisfy 
the exact limits obtained earlier by Sung and Stell. A new equation of state for 
the binary hard-sphere mixture which satisfies all the exact limits we have 
considered is suggested. 

KEY WORDS: contact value of radial distributions; equation of state; hard- 
sphere fluids; virial coefficients. 

1. I N T R O D U C T I O N  

Increasingly refined approximate equations of state for the hard-sphere 
fluid and hard-sphere mixture continue to be proposed [ 1-3] as a result of 
the availability of increasingly accurate simulation data [4] (for review, see 
Ref. 1 ). 
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From the solution of the Percus-Yevick (PY) equation, one obtains 
two equations of state; one is obtained from the virial equations, and the 
other from the compressibility equation [5] 

flpv Pv 1 341~2+3r 3 
= ~ ( 1 )  

p 1-~/  4o(1-~/)2 

flpPY 1 3~(2 343 
p - 1 - n  4 ~o(1 - ~ ) :  + 4o(1 - ,7 )  ~ (2) 

where 

~,=-~P~xkd~, q=r  (3) 
k 

p is the total number density, x~ and d i a r e  the molar fraction and diameter 
of species i, respectively, and subscripts v and c stand for virial and com- 
pressibility, respectively. 

It turns out that a more accurate equation of state for hard-sphere 
systems is the combination of Eqs. (1) and (2) [7, 8] 

p = (1 - O)p~ v + Opev v (4) 

where the 0 should be a function of pi = xip and d~ in general. 
Since the pressure obtained from the compressibility equation 

[Eq. (2)] in the PY approximation is the same as that obtained from the 
virial equation in scaled-particle theory (SPT) [-6], we have 

pPV _ -SPT -~,v (5) 

A more accurate contact value of the pair distribution function corre- 
sponding to Eq. (4) has also been proposed [9]: 

Yu = (1 - O0) sPT l,v Y~ + O~ Y,j (6) 

where Y~ is the contact value of the pair distribution function for the pair 
i, j. Superscripts SPT and PY refer to the scaled-particle theory and PY 
approximation, respectively. Obviously, one must have O0.=Oji if i# j .  
Putting Eq. (6) into the virial equation yields Eq. (4) if O,j is independent 
of i and j (O;j = 0). For a one-component system, we have O 0, = 0. 

When 0 = I, Eq. (4) reduces to the Carnahan Starling (CS) equation 
of state [7] for a pure hard-sphere fluid and the Mansoori-Carnahan- 
Starling-Leland (MCSL) equation of state for mixtures [8], However, it 
turns out that the pressure predicted by the CS equation of state is 
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systematically lower than recent accurate simulation data [4]. A new 
simple equation has been suggested by Kolafa [3] ,  which yields a better fit 
to simulation data, and it has been extended to mixtures and hard convex 
bodies by Boublik [2].  We find that their equations correspond to 
0 = 2 ( l + r / )  in Eq. (4) (although neither Kolafa [3]  nor Boublik [2]  
expressed their results in terms of 0). 

In Section 2 we analyze the optimized 0(r/) which can fit simulation 
data [4]  for a single-component hard-sphere fluid . Then in Section 3, we 
analyze the optimized Ois for the hard-sphere mixtures. It turns out that 
Eq. (6) is not able to predict the exact fourth virial coefficient for the binary 
hard-sphere mixtures unless the O U are allowed to depend upon the mole 
fraction x; of the components. Requirements of the exact point-solvent limit 
[ 1 ] together with another exact equation [10] in the combined low solute- 
concentration continuum-solvent limit provide a crucial test for the 
equations of the contact values and equations of state for mixtures. We 
show that O U must depend on i and j in order to satisfy these exact 
relations. 

2. E Q U A T I O N S  O F  S T A T E  F O R  O N E - C O M P O N E N T  
H A R D - S P H E R E  F L U I D S  

The equation of state obtained from Eq. (4) is 

- - -  + -t (7) 
p 1 - .  ~ o ( 1 - q )  2 ~ o ( t - q )  3 

For a one-component hard-sphere system, this reduces to 

tip 1 + r / +  q2-- 3q30 
p (1 __~)3 (8) 

Here the exact 0 must depend on r/. If we use the pressure which is 
obtained from simulation data [4]  in Eq. (8), then we can obtain 
simulation results of 0 as a function of the packing fraction. Results are 
shown in Fig. 1.0 = �89 and 0 = 2(1 + t/)/9 are also plotted for comparison. It 
shows that 0 = 2(1 + tl)/9 is much more accurate than 0 = 1. 

However, some other linear expressions of 0 are also worth con- 
sidering. We find that when we choose 0(r/) = 5/23 + (3/13)q, the equation 
of state is even closer to simulation data (Figs. 2 and 3). Comparison 
among some other recently suggested equations of state is also made in 
Figs. 2 and 3. It shows that linear combinations of the PY virial and com- 
pressibility equations (8) yield highly accurate equations of state for 
extremely simple 0. 
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Fig. 1. The mixing coefficient 0 as a function of the pack- 
ing fraction (r/). CS result ( ); Kolafa result ( - - ) ;  
simulation [4] (�9 results from Eq. (13) (---). The result 
from Eq. (14) is indistinguishable from the Kolafa result at 
high density and from the result of Eq. (13) at low density. 

The  virial expansion of the equat ions of state for different 0 is as 
follows: 0 = �89 (CS equat ion) ,  

tiP = 1 + 4q + 10r/2 + 18r/3 q- 28~/4 + 40r/5 + 54/'/6 + . . .  (9) 
P 

0 = 2(1 + q)/9 (Kolafa  equat ion) ,  

1q3 1 1 6 
--=/~P l + 4 n + 1 0 n 2 + l S ~  + 2 8 ~ n 4 + 4 0 t / 5 + 5 3 ~ n  + . . .  (10) 
p 

0 =  5/23 + (3/13)q, 

~P= l + 4tl + lOq2 +18.348t13 + 28.3511t14 + 40.OlrlS + 53.32t16 + ... i l l )  
P 

Fo r  compar ison,  the exact results [1 ] are 

/~P = 1 + 4q + 10t/2 + 18.3648t/3 + 28.2245~ 4 + 39.83t/s + 56.11/a + .-.  (12) 
P 
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Fig. 2. lOOA(flp--['~pEW)/p as a function of the packing 
fraction, where pZW is the Pad6 approximation result 
obtained in Ref. 4. CS equation ( ); Kolafa equation 
( - - - ) ;  0 = 5 / 2 3 + 3 / 1 3 q  ( - - - ) ;  equation obtained by 
adjusting B 6 and n 7 [Eq. (14)] ( . . . .  ); simulation [4]  
(<~). 
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F i g .  3. lOOA(flp--flpEW)/p as a function of the packing 
fraction, where pEW is the Pad6 approximation result 
obtained in Ref. 4. 0 = 2 ( 1  +t/) /9 compared with other 
equations recently suggested in Ref. 2. Kolafa equation 
( ); Eq. (27) in Ref. 2 ( - - - ) ;  Eq. (28) in Ref. 2 ( - - - ) ;  
Eq. (29) in Ref. 2 ( . . . .  ); simulation [4]  ( �9 



958 Zhou and Stell 

which give us an exact 0(r/) by expanding Eq. (8): 

O(q) = 0.2117333 +0.2899666q--0.0836333~ 2 - 0.9729q 3 (13) 

Thus, the exact 0 for the one-component hard-sphere fluid depends on the 
density if one goes beyond the third virial coefficient. As in Ref. 4, we also 
can adjust the virial coefficients B 6 and By to fit simulation data. The 
results of 0(tt) are 

O(t/) = 0.2117333 + 0.2899666r/- 0.17t72 + 0.155t/3 (14) 

with reduced virial coefficients 

B6 = 40.1 , BT= 53.5 (15) 

3. EQUATIONS OF STATE FOR BINARY HARD-SPHERE 
MIXTURES 

For hard-sphere mixtures, the virial expansion of pressure yields [ 11] 

tiP= 1 + Bp + Cp2 + Dp3 + ... (16) 
P 

with 

B = ~ x ix jB o (17a) 
i j  

C = ~ xixjxkCijl, (17b) 
ijk 

D = ~ xixjxkxtDi~kt (17C) 
~jkt 

where B, 7, Cuk, and De]kt are the second, the third, and the fourth virial 
coefficients for hard-sphere mixtures, respectively. 

It is well known that both the PY approximation and the SPT give the 
exact first three virial coefficients for hard-sphere mixtures [5, 6] and the 
good fourth virial coefficient (Table I). If one assumes that the contact 
values of cavity function satisfy Eq. (6), then one can obtain the pressure 
via the virial equation: 

2n 
tip = p + - f  ~ xixfl~. Yup 2 (18) 

t j  

where dij = (di + dj)/2. 
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Table I. The fourth virial coefficients of binary hard-sphere mixtures, which are 
reduced by (d12) 9, in different approximations [Ou= 2(1 + r/)/9 gives results 

between that of 0~=0 and that of 0 0 =  }, very close to the latter] 

959 

d~/d2=0.6 O o = 0  Og=�89 Ou= 1 This work ~ Exact [11] ~ 

D 1 iii 0.20478 0.19400 0.1724516 0.1979 0.19789 
DIH 2 0.68681 0.65188 0.5820241 0.6654 0.66367 
D i 122 2.22513 2.1142 1.892473 2.1576 2.0900 
D1222 6.90905 6.5625 5.869485 6.6950 6.7957 
D2222 20.3207 19.251 17.11220 19.641 19.637 

a O~e=0.2117 and O12 from Eq.(32). The "exact" results are numerical, nonanalytic 
assessments. The Dnl t  and D2222 of this work are exact and analytically expressible. 

The contact value obtained from Eq. (6) after plugging in the PY [5] 
and SPT [6] results can be written as 

1 3~2d~dj 3~d~d2 (19) 
Y'J-(1 -~/) ~- (1 --rl)2(di+dj) ~- (1 -O i j  ) ( l  - t l )3(di+dj)  2 

where r �89 2(1 +//)/9, and 1 give the pressure obtained from the PY 
virial equation, MCSL equation, Boublik equation, and equation from the 
SPT, respectively, if one combines Eqs. (18) and (19). The predictions of 
the fourth virial coefficients by these equations are compared with exact 
results [11] in Table I. It can be seen that the MCSL results are better 
than the SPT and the PY predictions. If we take O0 = 0.2117, the first non- 
zero term of the density expansion of the exact O for one-component hard 
spheres [Eq. (13)], we recover the exact Dl111 and D2=2 (within the 
accuracy of "exact" results in Ref. 10) and obtain better results for Din2 
and D1=2 than results obtained from either O0= �89 or O0=2(1+q) /9 .  
However, the prediction for Dn22 is the worst among these three 
approximations. It turns out that we are not able to fit the exact fourth 
virial coefficients by adjusting O12 (Dl11~ and D22 = depend only on Oll 
and 022, respectively) if we assume that O~ is independent of the mole frac- 
tion x i at the zeroth order of its density expansion 0!9) (the higher-order 
terms do not contribute to the fourth virial coefficients). From Eq. (6), we 
have 

1 - O 0  = r'~xact - r~v (20) r U -  
which leads to 

1 - O a - p - ~ - x i d i ~  ~-~ ( l - q ) 3 \  d---~./  (21) 

840/9/6-5 
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Expanding out in powers of p we have, to the zeroth order, the equation 

�9 "~(o) (12~(di+dj)2y~klxkx'lijk' 
1--e'iJ = \ -~  ]\ ~d~. } - ~ i ~  (22) 

where 

[ijk, = f fik(r13)~,(r24) ek,(r34)fu(r14)~.k(r23 ) (lrk dr, (23) 

with r12=d6. Here f/](rl2 ) is the Mayer f function and e i j = ~ j + l .  
Therefore, O~ ~ must, in general, depend on xi. From Eq. (23) it is easy to 
see that Iij~t =/jikl and Iu~ t = I~t k. 

For a binary mixture, if Xl = 0 or 1, one must obtain the zeroth-order 
density expansion 0(0)=0.2117333 for a one-component hard-sphere 
system from Eq. (22). Therefore, one has 

Ir2d 6 
I I 1 1 1  ~--- ~ 1-1 - -  0 ( 0 ) ' ]  ( 2 4 a )  

7c2d6 [1 - 0 r176 (24b) 
I2222 = -~- 

One can also expand Yo in terms of the number density: 

r~  = r~  ~ + E x~ rg)p + E x~x, r g l p  2 + . . .  (25) 
k h i  

Substituting Eq. (25) into Eq. (18) and comparing with Eqs. (16) and (17), 
we have 

27r 3 v(2) (26a) 
D i m  =-~--dll ~1111 

O1112=-~d311-Y(2)t_ 1112 - ~ y(2)1121 + Y ~ I  + Jt 2111V(2) ] (26b) 

__~,43 rv(2) ~_ y(2) + y(2) .a_ v(2) + y(2) ~_ y(2) ] (26c) 
D l 1 2 2  - -  9 ~ 1 1 L - - 1 1 2 2  ~ 2211 1212 ~ ~t 1221 2112 ~ 2121 

_~,43 rv(2) .a- y(2) ~_ y(2) ~_ v(2) ] (26d) 
D 1 2 2 2  - -  6 ~ 1 2 L  ~1222  ~ 2 1 2 2  ~ 2212 ~ 12221  

2~ 
D2222 = -~- d32 r2(~)2 (26e) 
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This equation is true for both exact and approximate v(2) Since l i jkl" 

Iijkl = [ Y(2)-I exact - a O k  l A [ atykY(2)-I P Y I  A 

we have 

(27) 

3 exact PY 
-/1211 = ~ [ D i r t 2  - -  D1112] - -  -/tit2 (28a )  

9 1 
. . . . .  t Dl122]  i ~ 2 1 2 _ 4 ~ 1  [31~22 - PV _ (-/1122+/2211) (28b) 

3 
. . . . . .  t 31222 ] - -  11222 (28c) 12212 --  7cd132 [D1222 - -  PY 

where 

Y (2)lPY-n2 d2d2 [ 3 ( d k + d , ) d i d j + d k d z ( d i + d j ) ]  
[ O'kZa "~ (di+4"-'~) 

(29) 

and D~;~ Y is obtained from Eqs. (29) and (26). It is worth noting that Dl1,1 
and D2222 are the fourth virial coefficients for pure component 1 and pure 
component 2, respectively. This is easy to see if one lets Xl=  0 or 1 in 
Eq. (16). 

For  binary hard-sphere mixtures, when we take the point-solvent limit 
(d2~O),  we have an exact result [1] ,  4 

t ip = tip lPur e .71.. P 2  (30a )  
(1 - t /1  ) 

Y,2 = 1/(1 - q,) (30b) 

where ~ = ill rk ~2~ 11i~--(rt/6)Pi d3, and p i =  xip. It is easy to show that the 
pressure obtained from Eqs. (18) and (19) does satisfy this exact relation if 
O , ( g  = O) = 0. 

When we take the infinite-dilution limit of the solute and the con- 
tinuum limit of solvent [r/l--* O, (d2/dl)--* 0], another exact result can be 
obtained [10]. It is 

YI2 = 1 + 4r/2 Y22, r / l - +  O, (d2 /d l ) . . -+O (31) 

It turns out [-10] that the contact value of the PY pair distribution 
function (O 0. = 1) is far from this exact result. In contrast, the contact value 

4 The result is stated in Ref. 1 without proofi The result was also independently obtained by 
Zhou and Stele 
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predicted by SPT(Oi j=0  ) is exactly satisfied. The MCSL (O0=�89 and 
Boublik [Oi j=2(1 +r/)/9] equations are intermediate in this regard (see 
Table II). 

Since Eq. (6) does not satisfy exact equations in the limit of zero 
concentration of solute and continuum of solvent if one uses O~j = O, one 
must go further to get good results in this regard. Sung and Stell, in 
Ref. 10, have suggested one appropriate modification. However, their 
equation does not satisfy the exact point-solvent limit result [Eq. (30)]. We 
find that if one lets 

I ( a l l  - d 2 ~ 2 ]  012=(xlOH +x2022) 1-(1-rl)\dl +dz] ] (32) 

then we will have a pressure expression that satisfies all the exact limits we 
have discussed. If d l =  d2 or x I = O, 1, with 011 = 022, we have 

O12 ~- O l l  = 0 2 2  ~-- O (33) 

which reduces to the exact equation of state for one-component hard- 
sphere fluids [-Eq. (8)]. An approximation that suggests itself is therefore 
Eq. (32) with Oll and 022 given by 1.050}~ + r/), where the exact Ol ~ is 
used, because this becomes the Kalafa approximation in the one-com- 
ponent limit. Here, O l 1 = O 2 2 = 2 ( 1 + r / ) / 9  when dl=d2 and 1.05 is the 
ratio of 2 and 0.211733 .... A somewhat simpler alternative approximation is 
given, for all i and j, by 

Oij= 1.050~9)(1 + r/) (34) 

Table II. The Ratio (1 +4r12Y22)/Y12 at the Limit of r h = 0  and d 2 = 0  a 

r/2 O 0 = 0 (SPT) O,j-3- 1 (MCSL) O 0 = 1 (PY) 

0 1 1 1 
0.1 1 1.0082 1.0250 
0.2 1 1.0267 1.0857 
0.3 1 1.0485 1.1687 
0.4 1 1.0686 1.2667 
0.5 1 1.0833 1.3750 
1 1 1 2 

a The result for O = 2(1 + r/)/9 is similar to O = �89 and is omitted here. A similar table can be 
found in Ref. 10. 
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again with the exact ~(o~ but this will no longer exactly satisfy Eq. (30). v / j  

Once O• is known, the mixing coefficient 0(t/i, di) defined in Eq. (4) is 
given by 

Y ij - , j  d ij 0 = ~'ij XiXjOij[ SPT Y~YI 3 

~.ijXiXj [ SPT PY 3 Y~J - Yo ] d~J 
(35) 
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